
NERC EDS: Research Data Management Best Practice

With thanks to the EDS Training Activity Working Group

Content

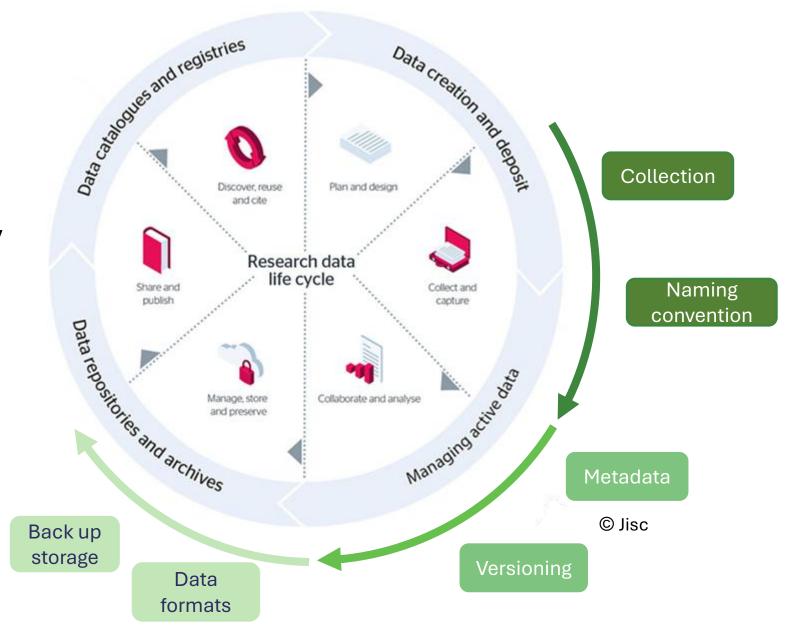
- Data Life Cycle
- Data Collection and Management

The Data Life Cycle

In this section, you will learn how to organise your data through planning, collection, analysis, publication and beyond

RDM lifecycle

- Data Collection
- Processing and management day-to-day


Describe the data

Process the data

Organise the data

Save the data

Collecting data in the field

Understand the deployment environment by asking yourself the following questions:

- Is it a deep field site or a remote field station?
- Data server may have <u>RAID</u> storage, offline backups
- Time server run an <u>NTP</u> client to sync accurate time
- Reliable power supply consider <u>UPS</u>, surge protection, IP PDU
- Remote network comms: scheduled transmission and remote login

General tips:

- Storage is cheap, but collecting remote, in situ data, is expensive
- Structure raw data appropriately
- Monitor and alarm propagation
- Have a second storage device
- Ensure available storage can withstand a missed site visit
- Capture metadata along data acquisition

Case study: Data collection on a ship

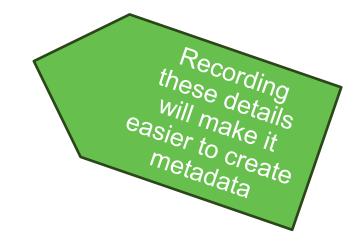
Ship track – position data

'Event' deployments – needs to be linked to other continuous data

Physical sample/lab metadata

Multiple continuous data acquisition systems e.g. Multibeam echosounder, ADCP

I prepare the information and material I need for my analysis, record any information that might impact the quality of the data, make sure to back up the data


Data on a day-to-day basis

DOCUMENTATION AT PROJECT LEVEL

- > Data collection methods, including instruments and protocols
- >Standards used and replication
- >File and data structure
- > Procedures for quality control and versioning
- >Problems that may affect the use of the data

DOCUMENTATION AT DATA LEVEL

- > Date created and version
- >Names and definitions of fields (variables)
- >Reasons for missing values
- > Problems that may affect specific records
- >Code used to generate processed data values


Manage your citations and references using citation software

Folder structures

Use folders and structure them hierarchically

- Group files within folders so particular topics are in one place
- Make sure folder structure is understandable by others
- Start with a limited number of generic folders, then create more specific subfolders

Adhere to existing procedures

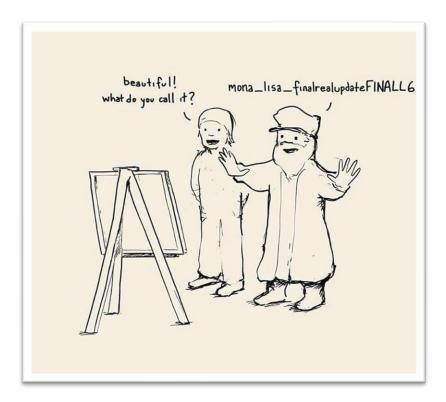
- Check for established team/department approaches which you can adopt
- Agree on a common folder structure that makes sense to everyone
- Document strategy in DMP

Name folders and file appropriately

- Be consistent when you name your data and the folders they're stored in
- Avoid spaces and special characters
- Use a file naming convention

Separate raw and working data

- Do not make any changes / corrections to the original raw data files to preserve original files
- Consider having your raw data read only to avoid deletion or changes.


File-naming conventions

Decide on a file naming convention at the start of your project. Useful file names are:

- ✓ Consistent
- ✓ Meaningful to you and your colleagues
- ✓ Allow you to find the file easily

Some tips:

- ✓ Start your file name with the date, formatted as
- YYYYMMDD, to display your files in chronological order
- ✓ Don't make file names too long
- √ Special characters should be avoided
- ✓ For sequential numbering, use leading zeros to ensure files sort properly."01, 02...99, etc" instead of "1, 2...99, etc."
- ✓ Do not use spaces: Instead use underscore (file_name), dashes (file--name), no separation (filename or FileName)
- ✓ Include versioning when appropriate

File name	Changes to file
ResearchReport_1.0	Original document
ResearchReport_1.1	Minor revision made
ResearchReport_1.2	Further minor revisions
ResearchReport_2.0	Second approved version

Units

- Describing parameters in a reusable way
- Making data understandable for others
- Placed in the header, not in the data
- Unified Code for Units of Measurement (<u>UCUM</u>)
 - All units of measure
 - International science, engineering
 - 7-bit US-ASCII character set

Information about the unit

Regular textual representation of the unit (for example 'knot')

How the unit should be represented in the dataset column

Table 8: International customary units

name	kind of quantity	c/s	c/i	M definition value	definition unit
inch	length	[in_i]	[IN_I]	no 2.54	cm
foot	length	[ft_i]	[FT_I]	no 12	[in_i]
yard	length	[yd_i]	[YD_I]	no 3	[ft_i]
mile	length	[mi_i]	[MI_I]	no 5280	[ft_i]
fathom	depth of water	$[fth_\mathtt{i}]$	[FTH_I]	no 6	[ft_i]
nautical mile	length	[nmi_i]	[NMI_I]	no 1852	m
knot	velocity	[kn_i]	[KN_I]	no 1	[nmi_i]/h
square inch	area	[sin_i]	[SIN_I]	no 1	[in_i]2
square foot	area	[sft_i]	[SFT_I]	no 1	[ft_i]2
square yard	area	[syd_i]	[SYD_I]	no 1	[yd_i]2
cubic inch	volume	[cin_i]	[CIN_I]	no 1	[in_i]3
cubic foot	volume	[cft_i]	[CFT_I]	no 1	[ft_i]3
cubic yard	volume	[cyd_i]	[CYD_I]	no 1	[yd_i]3
board foot	volume	[bf_i]	[BF_I]	no 144	[in_i]3
cord	volume	[cr_i]	[CR_I]	no 128	[ft_i]3
mil	length	[mil_i]	[MIL_I]	no 1 × 10 ⁻³	[in_i]
circular mil	area	[cml_i]	[CML_I]	no 1	[pi]/4.[mil_i]2
hand	height of horses	[hd_i]	[HD_I]	no 4	[in_i]